High Accuracy Wireless Time Synchronization for Distributed Antenna Arrays

2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting

Jason M. Merlo and Jeffrey A. Nanzer
Michigan State University, East Lansing, MI, USA
Outline

1. Distributed Antenna Arrays Overview
2. High Accuracy Time Transfer
3. Experimental Results
Distributed Array Applications and Benefits

Reduced Cost
- Smaller, low-cost platforms
- Cost distributed over many nodes

Reconfigurable
- Adaptable sub-arrays to meet *bandwidth* and *spatial* requirements

Increased Robustness
- Nodes may be added or removed without failure of array

Increased Gain
- Transmission gain \(\propto N^2 \)
- Reception gain \(\propto M \)
- Total gain \(\propto N^2 M \)
Distributed Array Coordination Challenges

Frequency Syntonization

\[s_1 : f_1 = 5.0 \text{ Hz} \]

\[s_2 : f_2 = 6.0 \text{ Hz} \]

Phase Alignment

\[s_1 : \phi_1 = 0 \text{ rad} \]

\[s_2 : \phi_2 = \frac{\pi}{2} \text{ rad} \]

Time Synchronization

\[s_1 : \psi_1 = 0 \text{ rad} \]

\[s_2 : \psi_2 = \pi \text{ rad} \]

Focus of this work
Distributed Antenna Arrays Overview

Distributed Array Time Error Tolerance

Probability of coherent gain:

\[P(G_c \geq X) \]

where

\[G_c = \frac{|s_r s^*_i|}{|s_1 s^*_i|} \]

- \(s_r \): received signal
- \(s_1 \): ideal signal

\[P(G_c \geq X) \geq 0.9 \]

Timing error <10% pulse duration

Modulation requires stricter timing

\[\sigma_T/T \]

Distributed Antenna Arrays Overview

Distributed Array Coordination Topologies

Closed-Loop

Pros
- Minimal information sharing required
- Channel errors corrected implicitly

Cons
- Can only transmit to base station (no beamsteering)
- Time consuming due to potentially large number of iterations

Open-Loop

Pros
- Compatible with noncooperative/passive targets
- Arbitrary beamforming capability

Cons
- Stringent inter-node coordination requirements
- Channel errors to target location not inherently corrected
System Time Model

- Time at node n:
 \[T_n(t) = t + \delta_n(t) + \nu_n(t) \]

 - t: true time
 - $\delta_n(t)$: time-varying bias
 - Assumed quasi-static over synchronization epoch
 - No further assumptions on distribution of δ_n
 - $\nu_n(t)$: other zero-mean noise sources
 - $\Delta_{0n}(t) = \delta_0(t) - \delta_n(t)$

- Goal: estimate and compensate for δ_n
2 | High Accuracy Time Transfer

Time Transfer Techniques

One-Way Time Transfer

Pros
- Receiver nodes do not need to transmit
- One node can provide time to many anonymous receivers

Cons
- Channel must be well characterized to accurately determine and subtract propagation delay
- Positions and trajectories of nodes must be known

Two-Way Time Transfer

Pros
- Both nodes implicitly estimate channel delay
- Both nodes determine their relative offset

Cons
- Requires all nodes to have transmitters
- Time transfer must be performed pairwise
 - \(N \) orthogonal channels required to synchronize \(N \) nodes

\(\tau \), \(v \)
Two-Way Time Transfer Synchronization

- Assumptions
 - Channel is quasi-static over synchronization epoch

- Propagation delay estimate:
 \[\tau_{0n} = \frac{(t_{RX0} - t_{TXn}) + (t_{TX0} - t_{RXn})}{2} \]

- Timing skew estimate:
 \[\Delta_{0n} = \frac{(t_{RX0} - t_{TXn}) - (t_{TX0} - t_{RXn})}{2} \]

High Accuracy Time Delay Waveform

- The delay accuracy lower bound (CRLB) for time is given by
 \[\text{var}(\hat{\tau} - \tau) \geq \frac{1}{2\xi_f^2} \cdot \frac{N_0}{E_s} \]
 - \(\xi_f^2 \): mean-squared bandwidth
 - \(N_0 \): noise power spectral density
 - \(E_s \): signal energy
 \[\frac{E_s}{N_0} = \tau_p \cdot \text{SNR} \cdot \text{NBW} \]
 - \(\tau_p \): integration time
 - \(\text{SNR} \): signal-to-noise ratio
 - \(\text{NBW} \): noise bandwidth

2 | High Accuracy Time Transfer

High Accuracy Time Delay Waveform

\[
\text{var}(\hat{\tau} - \tau) \geq \frac{1}{2\zeta_f^2} \cdot \frac{N_0}{E_s}
\]

- For constant-SNR, maximizing \(\zeta_f^2 \) will yield improved delay estimation

\[
\zeta_f^2 = \int_{-\infty}^{\infty} (2\pi f)^2 |G(f)|^2 df
\]

- \(\zeta_f^{(LFM)} = (\pi \cdot \text{BW})^2 / 3 \)
- \(\zeta_f^{(two-tone)} = (\pi \cdot \text{BW})^2 \)

\[\text{Relative Mean Sq. Bandwidth} \begin{pmatrix} \zeta_f^2 \zeta_f^0 \end{pmatrix}\]

\[\text{Fractional Occupied Bandwidth (\(\phi \))}\]

2 | High Accuracy Time Transfer

Delay Estimation and Refinement

- Discrete matched filter (MF) used in initial time delay estimate

\[s_{MF}[n] = s_{RX}[n] \otimes s_{TX}^*[-n] = \mathcal{F}^{-1}\{S_{RX}S_{TX}^*\} \]

- Two-tone matched filter waveform is highly ambiguous

- High SNR or narrow-band pulse required to disambiguate peaks

Delay Estimation and Refinement

- MF causes estimator bias due to time discretization

- Refinement of MF obtained using Quadratic Least Squares (QLS) fitting to find true delay based on three sample points

\[\hat{t} = \frac{T_s}{2} \frac{s_{\text{MF}}[n_{\text{max}} - 1] - s_{\text{MF}}[n_{\text{max}} + 1]}{s_{\text{MF}}[n_{\text{max}} - 1] - 2s_{\text{MF}}[n_{\text{max}}] + s_{\text{MF}}[n_{\text{max}} + 1]} \]

where

\[n_{\text{max}} = \arg\max_n \{s_{\text{MF}}[n]\} \]

Delay Estimation and Refinement

- QLS results in small residual bias due to an imperfect representation of the underlying MF output.
- Residual bias is a function of waveform and sample rate.
- Can be easily corrected via lookup table.
Experimental Results

Experimental Time Synchronization Setup

- **Time Transfer Waveform**
 - \(f_c = 5.9 \text{ GHz} \)
 - \(\text{BW} = 50 \text{ MHz} \) (tone separation)
 - \(\tau_{\text{rise-fall}} = 50 \text{ ns} \) (rise-fall time)
 - \(\tau_p = 10 \mu\text{s} \) (pulse duration)
 - \(\tau_{\text{sync}} = 50.01 \text{ ms} \) (synchronization epoch)

- **Antenna**
 - 5.9 GHz, 13.2 dBi Yagi-Uda antennas

- **SDR**
 - \(f_s = 200 \text{ MSa/s} \) (sample rate)
Experimental Results

Experimental Time Synchronization Setup
Time-Transfer and Beamforming Precision

- Time transfer st. dev. was estimated on SDR using time update deltas.
- Beamforming st. dev. was estimated by cross-correlating received waveforms on oscilloscope.
- Inter-channel bias was <10 ps after calibration.
Conclusions

• Using spectrally-sparse two-tone pulses, theoretical maximum time-delay estimation may be achieved

• Approach experimentally validated using two-way time synchronization on software-defined radios

• Using a 50 MHz signal bandwidth, precisions of
 • ~2 ps for two-way time transfer
 • ~7 ps for beamforming

are achieved

This work was supported in part by:
Questions?

Email: merlojas@msu.edu