

All-Digital Wirelessly Coordinated Phased Array Collaborative Beamforming Using High Accuracy Time Synchronization

2025 IEEE International Symposium on Antennas & Propagation and North American Radio Science Meeting

WE-UC.1A | MIMO, MISO, and Communication Systems

Jason Merlo and Jeffrey Nanzer Michigan State University, East Lansing, MI, USA

Distributed Array Overview

Distributed Array Overview

Benefits

Scalability

- Reduced deployment cost
- Larger array sizes possible
- Increased total gain / throughput
- Adaptability
 - Can operate efficiently over larger frequency range
- Reliability
 - Decreased thermal management requirements
 - Resilient to antenna / node failure

3

Electrical State Coordination Overview

Motivation for Fully-Digital Coordination

Hybrid Coordination (Prior Work*)

Digital Two-Way Time Transfer + Analog Oneway Frequency Transfer

Fully-Digital Coordination

Digital Two-Way Time–Frequency Transfer

^{*} S. R. Mghabghab and J. A. Nanzer, "Open-Loop Distributed Beamforming Using Wireless Frequency Synchronization," in *IEEE T-MTT*, 2021. **WE-UC.1A**

Motivation for Fully-Digital Coordination

Hybrid Coordination (Prior Work*)

Digital Two-Way Time Transfer + Analog Oneway Frequency Transfer

Pros

- Simpler software to implement
- Continuous frequency reference

Cons

Low tolerance to channel variation and relative motion

Fully-Digital Coordination

Digital Two-Way Time–Frequency Transfer Pros

- Resilient to channel variation and motion
- No dedicated hardware required
 - ⇒ Can be implemented on existing radios
- Amenable to distributed consensus coordination schemes

ime–Frequency Transfer

Cons

- Software is more complex to implement
- Requires short resynchronization intervals and <u>real-time operation</u>

Time/Frequency Error in Software-Defined Radios

Frequency Offset (Hz) $f_{\rm c}$

System Time Reference

Reference Oscillator Model

$$\phi_{\rm osc}(t) = 2\pi f_{0,\rm osc} (1 + \Delta f_{\rm osc}(t)) t + v_{\phi}(t)$$

System PLL Model

$$\begin{split} \phi_{\rm sys}(t) &= \left\langle \kappa_{\rm sys} \left[\phi_{\rm osc}(t) + \nu_{\phi,{\rm sys},{\rm in}}(t) \right] \right\rangle_{\rm lpf} \\ &+ \left\langle \nu_{\phi,{\rm vco}}(t) \right\rangle_{\rm hpf} + \phi_{0,{\rm sys}} \end{split}$$

where

 $\kappa_{\rm sys}$ Feedback scaling coefficient

 $\phi_{\rm ref}(t)$ Reference input phase

 $v_{\phi,\text{pll,in}}(t)$ Intrinsic phase noise process

 $v_{\phi,vco}(t)$ Phase noise from VCO

 $\phi_{0,ref}$ Random initial startup phase

Filtered Output Frequency Spectra

System Time Reference

Reference Oscillator Model

 $\phi_{\rm osc}(t) = 2\pi f_{0,\rm osc} (1 + \Delta f_{\rm osc}(t))t + \nu_{\phi}(t)$

System PLL Model

System PLL Approximation

$$\Rightarrow \phi_{\rm sys}(t) \approx \kappa_{\rm sys} \big[2\pi f_{0,\rm osc} \big(1 + \Delta f_{\rm osc}(t) \big) t \big]$$

Dominant PSD still due to oscillator drift/noise

Filtered Output Frequency Spectra

Phase-Locked Loop Synthesizers

 $oldsymbol{\phi}_{ ext{dac}}(t)$ –

Phase can be represented as time by

$$\phi_{\rm sys}(t) \approx \kappa_{\rm sys} \Big[2\pi f_{0,\rm osc} \Big(1 + \Delta f_{\rm osc}(t) \Big) t + v_{\phi}(t) \Big] + \phi_{0,\rm sys} \longrightarrow T_{\rm sys}(t) = \frac{\phi_{\rm sys}(t)}{\kappa_{\rm sys} 2\pi f_{0,\rm osc}}$$

SYS PLL is the main time/frequency distribution point

 $\mathbf{\dot{Q}}\phi_{\mathrm{tx}}(t)$

Internode Time Error

The system clock phase and time *difference* between two nodes

$$\phi_{\text{sys}}^{(n,m)}(t) = \phi_{\text{sys}}^{(m)}(t) - \phi_{\text{sys}}^{(n)}(t)$$

and
$$T_{\text{sys}}^{(n,m)} = \frac{\phi_{\text{sys}}^{(n,m)}(t)}{\kappa_{\text{sys}} 2\pi f_{0,\text{osc}}} \approx \Delta f_{\text{osc}}^{(n,m)}(t)t + T_{0,\text{sys}}^{(n,m)} + \nu_{T,\text{sys}}^{(n,m)}(t)$$

Time difference <u>results in only the error terms</u>

Goal: Estimate $T_{\text{sys}}^{(n,m)}$ to compensate TX waveform

Direct Digital Phase Compensation

Carrier waveform with errors relative to node N_0

$$s_{tx}^{(n)}(t) \approx \Psi_{tx} \left(t + T_{sys}^{(0,n)}(t) \right) \exp \left\{ j2\pi f_{0,tx}t + j2\pi f_{0,tx}T_{sys}^{(0,n)}(t) + j\phi_{0,tx} \right\}$$
Digital baseband
waveform with errors
Carrier phase with errors

Assume: high-accuracy estimate of $T_{sys}^{(0,n)}$ is available

Goal: Modify Ψ_{tx} such that errors are compensated

Direct Digital Phase Compensation

Carrier waveform with errors relative to node N_0

$$s_{\text{tx}}^{(n)}(t) \approx \Psi_{\text{tx}}\left(t + T_{\text{sys}}^{(0,n)}(t)\right) \exp\left\{j2\pi f_{0,\text{tx}}t + j2\pi f_{0,\text{tx}}T_{\text{sys}}^{(0,n)}(t) + j\phi_{0,\text{tx}}\right\}$$

Digital compensation waveform:

$$\widetilde{\Psi}_{tx}(t) = \Psi_{tx}\left(t - \widehat{T}_{sys}^{(0,n)}(t)\right) \exp\left\{-j2\pi f_{0,tx}\widehat{T}_{sys}^{(0,n)}(t)\right\} \exp\left\{-j\widehat{\phi}_{0,tx}\right\}$$
Time-corrected digital baseband waveform
Phase conjugate carrier frequency error and static calibration phases

Direct Digital Phase Compensation

Carrier waveform with errors relative to node N_0

$$s_{\text{tx}}^{(n)}(t) \approx \Psi_{\text{tx}}\left(t + T_{\text{sys}}^{(0,n)}(t)\right) \exp\left\{j2\pi f_{0,\text{tx}}t + j2\pi f_{0,\text{tx}}T_{\text{sys}}^{(0,n)}(t) + j\phi_{0,\text{tx}}\right\}$$

Digital compensation waveform:

$$\widetilde{\Psi}_{\mathsf{tx}}(t) = \Psi_{\mathsf{tx}}\left(t - \widehat{T}_{\mathsf{sys}}^{(0,n)}(t)\right) \exp\left\{-j2\pi f_{0,\mathsf{tx}}\widehat{T}_{\mathsf{sys}}^{(0,n)}(t)\right\} \exp\left\{-j\widehat{\phi}_{0,\mathsf{tx}}\right\}$$

Substitute original waveform $\Psi_{tx}(t)$ for $\widetilde{\Psi}_{tx}(t)$

$$\Rightarrow s_{\text{tx}}^{(n)}(t) \approx \Psi_{\text{tx}}(t) \exp\{j2\pi f_{0,\text{tx}}t\}$$

Digital Time Coordination Technique

Two-Way Time Synchronization

- Assumption:
 - Link is $\underline{reciprocal} \Rightarrow \underline{quasi-static}$ during the synchronization epoch
- Apparent one-way time of flight (ToF):

$$\tilde{\tau}^{(n \to m)}[k] = T_{\text{RX}}^{(m)} \left(t_{\text{RX}}^{(m)}[k] \right) - T_{\text{TX}}^{(n)} \left(t_{\text{TX}}^{(n)}[k] \right)$$

• Internode timing skew:

$$T_{0,\text{sys}}^{(n,m)}[k] = \frac{\tilde{\tau}^{(n \to m)}[k] - \tilde{\tau}^{(m \to n)}[k]}{2}$$

Digital Time Coordination Technique

Two-Way Time Synchronization

- Assumption:
 - Link is $\underline{reciprocal} \Rightarrow \underline{quasi-static}$ during the synchronization epoch
- Apparent one-way time of flight (ToF):

$$\tilde{\tau}^{(n \to m)}[k] = T_{\text{RX}}^{(m)} \left(t_{\text{RX}}^{(m)}[k] \right) - T_{\text{TX}}^{(n)} \left(t_{\text{TX}}^{(n)}[k] \right)$$

• Internode range:

$$R^{(m,n)}[k] = c \cdot \frac{\tilde{\tau}^{(n \to m)}[k] + \tilde{\tau}^{(m \to n)}[k]}{2}$$

Time of Arrival Estimation Process

The same process is repeated in the reverse direction from N_n to N_0

J. M. Merlo, S. R. Mghabghab and J. A. Nanzer, "Wireless Picosecond Time Synchronization for Distributed Antenna Arrays," in IEEE Transactions on Microwave Theory and Techniques, vol. 71, no. 4, pp. 1720-1731, April 2023, doi: 10.1109/TMTT.2022.3227878.

High-Accuracy Frequency Estimation

Frequency estimate performed by repeated estimates of $T_{sys}^{(n,m)}$

$$\Delta \hat{f}_{\text{osc}}^{(n,m)}[k] = \frac{\hat{T}_{\text{sys}}^{(n,m)}[k] - \hat{T}_{\text{sys}}^{(n,m)}[k-1]}{\tau_{\text{twtt}}[k]}$$

Where time estimate is:

$$\hat{T}_{\text{sys}}^{(0,n)}(t) = \Delta \hat{f}_{\text{osc}}^{(0,n)}(t)t + \hat{T}_{0,\text{sys}}^{(0,n)}$$

Constant component $\hat{T}_{0,sys}^{(0,n)}$ corrected by initial two-way time transfer

Repeated Estimates of $T_{sys}^{(n,m)}$

WE-UC.1A

Fully-Digital Coordination System Schematic

Legend

Experimental Setup

Calibration & Performance Evaluation

Collaborative Beamforming Measurements

Dynamic In-Lab Beamforming Comparison

Experiment Summary

- Presented new fully-digital high-accuracy time-frequency coordination technique for SDRs, independent of external time/frequency references
- Benchmarked new approach against hybrid coordination technique
- Achieved $G_c = \sim 0.96$ over 35 m range at 1.0 GHz

Technique	Beamforming Coherent Gain	Phase Std.	Time Std.	Theoretical Throughput*
Hybrid (Baseline)	~0.97	10.36°	82.66 ps	~1.2 Gbps
Fully-Digital	~0.96	16.77 °	96.74 ps	~1.0 Gbps

* Maximum theoretical BPSK throughput; $Pr(G_c \ge 0.9) > 0.9$

^{*} P. Chatterjee and J. A. Nanzer, "Effects of time alignment errors in coherent distributed radar," in 2018 IEEE Radar Conference (RadarConf18), pp. 0727–0731, 2018.

merlojas@msu.edu

Thank you to our project sponsors and Collaborators:

