

Jason M. Merlo, Naim Shandi, Matthew Dula, Ahona Bhattacharyya, and Jeffrey A. Nanzer

Thursday 10/17, 8:40 AM | Digital Array Architectures, Room 311

PROJECT SUMMARY

wirelessly coordinated three-element coherent A distributed phased array performing beamforming and steering to a far-field target at 1.05 GHz for use in **GNSS-denied environments is demonstrated using a** distributed compute system architecture and fullywireless communication links. Experiments yield a beamforming gain of 9.32 dB (95%) with a sub-60 ps inter-element timing accuracy.

DISTRIBUTED PHASED ARRAY OVERVIEW

Benefits of Distributed Phased Arrays

- Reduced deployment cost
- Resilient to antenna / node failure
- Larger array sizes possible
- Increased gain and throughput
- Efficient wideband operation
- Decreased thermal management

APPLICATIONS

FULLY WIRELESS COLLABORATIVE BEAMFORMING USING A THREE-ELEMENT

ELECTRICAL STATE ALIGNMENT

System Time and Carrier Model

Effective system time at the output of the RF signal path

Transmitted waveform with time, frequency, and phase offsets

$$s_{\mathrm{TX,RF}}^{(n)}(t) = s_{\mathrm{b}}\left(T_{\mathrm{TX}}^{(n)}(t)\right) \exp\left\{j2\pi \cdot f_{\mathrm{RF,TX}}\right\}$$

Analog Frequency Syntonization

Compensating for $lpha_{ extsf{1}}^{(n)}$

←10MHz

Wireless frequency transfer receiver circuit

 $au_{
m pd}$

 $t_{\rm RX}^{(n)}$

- - - - -

×----

***** - - - - - ·

×----

Digital Time Synchronization

Two-way Time Transfer (TWTT)

One-way time delay estimate $ilde{ au}^{(n ightarrow m)}[k]$ $t_{\mathrm{TX}}^{(n)}$ $=T_{\mathrm{RX}}^{(m)}\left(t_{\mathrm{RX}}^{(m)}[k] ight)$ $\left(t_{\mathrm{TX}}^{(n)}[k]\right)$ **Two-way time delay estimate** $\tilde{\tau}^{(n \to m)}[k] - \tilde{\tau}^{(m \to n)}[k]$ $lpha_0^{(m,n)}[k] =$ $au_{\mathrm{prop}}^{(m,n)}$ Inter-node time-of-flight estimate $\Delta^{(m,n)}$

 $\tilde{\tau}^{(n \to m)}[k] + \tilde{\tau}^{(m \to n)}[k]$ $\tau^{(m,n)}[k] = -$

Inter-node range estimate $R^{(m,n)}[k] = c \cdot \tau^{(m,n)}[k]$

Time of Arrival Estimation

Digital Waveform Compensation

Baseband waveform resampled at correct time offset, with carrier phase compensation

 $s_{\rm b}^{(n)}[i] = s_{\rm m} \left(t_{\rm s}[i] + \alpha_{0,\rm TX}^{(n)}[k] \right) \exp \left\{ -j \left(2\pi \cdot f_{\rm RF,\rm TX} \cdot \alpha_{0,\rm TX}^{(n)}[k] + \phi_{0,\rm TX}^{(n)} \right) \right\}$

EXPERIMENTAL SYSTEM CONFIGURATION

 $_{\rm X}^{(\prime)}(t)$

 $_{\mathrm{X}} \cdot T_{\mathrm{TX}}^{(n)}(t) + j\phi_{0,\mathrm{TX}}^{(n)} \Big\}$

EXPERIMENTAL BEAMFORMING MEASUREMENT RESULTS

Coherent Gain (Broadside) vs. Beamsteering Angle

Michigan State University, East Lansing, MI, USA

2024 IEEE International Symposium on Phased Array Systems & Technology

Experimental Setup

CW Pulse Train Matched Filter

Measurement Summary

Beamforming	Beamforming	Theoretical
Gain	Standard Dev.	Throughput*
9.32 dB (95%)	< 60.00 ps	~1.6 Gbps

*Based on Monte-Carlo simulations of BPSK data