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Coherent Wavefront
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Coherent Wavefront

Distributed Phased Array

Receiver

• Many small nodes make up array
• Reduced deployment cost
• Decreased thermal management 

requirements
• Resilient to antenna / node failure

• Larger array sizes possible
• Increased total gain / throughput

• Can operate over much larger 
frequency range

Benefits

Motivation
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Applications

Single-platform 
resolution

Distributed array
resolution

Precision Agricultural 
Sensing

Distributed V2X Sensing Space Communication 
and Remote SensingNext Generation 5G/6G 

Satellite Cellular Networks

Receiver or 
imaging target

Earth-Based 
communication 
base station

Sensing and
communication

relay satellite
constellation

4We2D-3
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Coherent Distributed Array Synchronization
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System Time Model (Polynomial)

𝑁0

𝑁𝑛

𝑅

Node: 0

Node: 𝑛 𝛼+
(-)

Relative Clock Alignment
• Local time at node 𝑛:

𝑇 7 𝑡 = %
89:

;

𝛼8
7 𝑡8 + 𝜈(7)	(𝑡)

– 𝐾: time model polynomial order

– 𝛼/
- : 𝑘th clock drift coefficient at 𝑛th node

– 𝑡 : global true time

– 𝜈-(𝑡): other zero-mean noise sources

• Goal: 
– Identify 𝛼/	∀	𝑛
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System Time Model (Linear)

𝑁0

𝑁𝑛

𝑅

Node: 0

Node: 𝑛 𝛼+
(-)

Relative Clock Alignment
• Assumption: 

– Over short observation intervals time 𝜏, higher order 
terms are negligible

𝛼- ≈ 0	∀	𝑘 > 1

• Simplifies local time at node 𝑛:

𝑇 - 𝑡 = 𝛼0
(-)𝑡 + 𝛼+

(-) + 𝜈(-)	(𝑡)

where:

– 𝛼.
()): time bias

– 𝛼%
()): relative frequency scale

In practice, 𝛼/ will be time-varying
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Time Synchronization Technique
Two-Way Time Synchronization

• Assumption:
– Link is reciprocal ⟹ quasi-static during the 

synchronization epoch

• Timing skew estimate:
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• Inter-node range estimate:
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One-Way Delay Estimation — 𝑇!"
# 𝑡
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J. M. Merlo, S. R. Mghabghab and J. A. Nanzer, "Wireless Picosecond Time Synchronization for Distributed Antenna Arrays," in IEEE Transactions on 
Microwave Theory and Techniques, vol. 71, no. 4, pp. 1720-1731, April 2023, doi: 10.1109/TMTT.2022.3227878.

Matched Filter
Quadratic Least Squares

Peak RefinementPulsed Two-Tone Transmission

N0 N𝒏

TX RX

The same process is repeated in the reverse direction from N𝒏 to N0

𝑓
𝑓' 𝑓0

𝑆(𝑓)
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Wireless Frequency Syntonization

f1 f2

fref

fref

LPFBPF

Wireless Frequency Transfer Receiver Circuit

• Two-tone transmitter with carrier spacing  𝑓ref 
• Self-mixing receiver: Mixes received signal with itself, low-pass filters frequencies above 𝑓/"0
• Fundamental frequency  𝑓/"0  received at output used to discipline local oscillators on the radio 

nodes (tracks 𝛼%
()))

𝑓ref	

𝑓1	 𝑓2	 𝑓ref	

S. R. Mghabghab and J. A. Nanzer, "Open-Loop Distributed Beamforming Using Wireless Frequency Synchronization," in IEEE Transactions on Microwave Theory and 
Techniques, vol. 69, no. 1, pp. 896-905, Jan. 2021, doi: 10.1109/TMTT.2020.3022385.

Signal Gen.
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Carrier Model
• The carrier at any node

Φ 7 𝑡 = exp 𝑗2𝜋𝑓D𝑇 7 (𝑡) exp 𝑗𝜙(7)

𝛼E
(7)(𝑡)𝑡 + 𝛼:

(7)(𝑡) + 𝜈(7)(𝑡)

• To compensate, we must:

– Calibrate the static phase rotations 𝜙@A
- , 𝜙BA

-  à 𝜙@A,DEF
- , 𝜙BA,DEF

-

– Estimate and correct for 𝛼(-) using wireless time and frequency transfer 
techniques
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Transmit Signal
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Receive Signal
• Received signal at each element (after compensation):

𝑠BA
- 𝑡 = 1

HI+

J

1
KI+

L

𝐴(K) 𝑠@A
H 𝑡 − 𝜏M

(H,K,-) exp 𝑗 𝜙BA
- − 𝜙BA,DEF

- − 𝜙NO
(-)

– 𝐴(K): complex scattering coefficient of 𝑙th scatterer

– 𝜏M
(H,K,-): time delay of waveform transmitted from node 𝑚, reflecting off scatterer 
 𝑙, and received at node 𝑛

• Downrange matched filter:    𝑠!" 𝑡 = ℱ#$ ℱ ∑%&'( 𝑠)*
% 𝑡 𝑆+*∗

sum of time-delayed scatters phase

ScatterersTransmitters

Receivers
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System Schematic

Imaging Environment
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Experimental Setup

N0 N1

TX

RX

Sync
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Experimental Setup
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Static Measurement Results

Label
RX0 RX1 BF Realized Gain

dB dB dB dB %–ideal

A 12.082 11.508 14.570 2.765 94.5

B 13.221 12.240 13.340 0.581 57.2

C 7.057 8.307 10.172 2.445 87.8

D 8.993 8.508 11.037 2.279 84.5

E 8.119 5.232 7.572 0.660 58.2

F 13.840 7.769 14.645 2.857 96.5

G 5.121 6.246 7.174 1.454 69.9

H 3.916 6.478 5.516 0.133 51.6

I 5.323 1.121 5.544 1.832 76.2

Boldface values denote the highest received 
power after matched filtering

1D Downrange Beamforming Slice
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Dynamic Measurement Results
• Pedestrian walking 

with corner reflector

– Started ~7 m away, 
walked to ~30 m 
then returned

• Absolute time 
corrections shown 
below
– Indicates high level of 

timing accuracy once 
pedestrian >~15 m 
away
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Conclusion
• Discussed a High accuracy time-frequency-phase coordinated coherent 

distributed phased array

• Demonstrated a 2×2 distributed coherent radar array in static and 
dynamic environments

• Static measurement performance summary:

Statistic
Realized Receive Gain

dB %–ideal
Maximum 2.86 96.5

Median 2.12 81.5
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High Accuracy Delay Estimation
• The delay accuracy lower bound 

(CRLB) for time is given by
 

var 𝜏̂ − 𝜏 ≥
1
2𝜁,'

⋅
𝑁.
𝐸7

– 𝜁PQ: mean-squared bandwidth

– 𝑁+: noise power spectral density
– 𝐸R: signal energy

– 8/
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J. A. Nanzer and M. D. Sharp, “On the Estimation of Angle Rate in Radar,” IEEE T Antenn Propag, vol. 65, no. 3, pp. 1339–1348, 2017, 
doi: 10.1109/tap.2016.2645785. 
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High Accuracy Delay Estimation
• Discrete matched filter (MF) used in 

initial time delay estimate
 

𝑠TU 𝑛 = 𝑠BA 𝑛 ⊛ 𝑠@A∗ [−𝑛]	
= ℱW0 𝑆BA𝑆@A∗

• High SNR typically required to 
disambiguate correct peak

• Many other waveforms exist which 
balance accuracy and ambiguity

J. M. Merlo, S. R. Mghabghab and J. A. Nanzer, "Wireless Picosecond Time Synchronization for Distributed Antenna Arrays," in IEEE Transactions on Microwave Theory and 
Techniques, vol. 71, no. 4, pp. 1720-1731, April 2023, doi: 10.1109/TMTT.2022.3227878.
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Delay Estimation Refinement
• MF is biased due to time discretization limited by 

sample rate

• Refinement obtained using Quadratic Least 
Squares (QLS) fitting to find true delay from three 
sample points

𝜏̂ =
𝑇7
2

𝑠54 𝑛:;< − 1 − 𝑠54 𝑛:;< + 1
𝑠54 𝑛:;< − 1 − 2𝑠54 𝑛:;< + 𝑠54 𝑛:;< + 1

   where
𝑛:;< = argmax

)
𝑠54[𝑛]

J. M. Merlo, S. R. Mghabghab and J. A. Nanzer, "Wireless Picosecond Time Synchronization for Distributed Antenna Arrays," in IEEE Transactions on Microwave Theory and 
Techniques, vol. 71, no. 4, pp. 1720-1731, April 2023, doi: 10.1109/TMTT.2022.3227878.
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J. M. Merlo, S. R. Mghabghab and J. A. Nanzer, "Wireless Picosecond Time Synchronization for Distributed Antenna Arrays," in IEEE Transactions on Microwave Theory and 
Techniques, vol. 71, no. 4, pp. 1720-1731, April 2023, doi: 10.1109/TMTT.2022.3227878.

• QLS results in small residual bias due 
to an imperfect representation of the 
underlying MF output

• Residual bias is a function of 
waveform and sample rate

• Can be corrected via lookup table 
based on where estimate falls within 
a bin

Predicted Bias for Two-Tone & LFM

Delay Estimation Refinement
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Delay Estimation Refinement

• QLS results in small residual bias due 
to an imperfect representation of the 
underlying MF output

• Residual bias is a function of 
waveform and sample rate

• Can be corrected via lookup table 
based on where estimate falls within 
a bin

J. M. Merlo, S. R. Mghabghab and J. A. Nanzer, "Wireless Picosecond Time Synchronization for Distributed Antenna Arrays," in IEEE Transactions on Microwave Theory and 
Techniques, vol. 71, no. 4, pp. 1720-1731, April 2023, doi: 10.1109/TMTT.2022.3227878.

Measured Bias for Two-Tone
(before and after applying corrections)

Uncompensated

Compensated


