

We2D-3

Fully Wireless Coherent Distributed Phased Array System for Networked Radar Applications

Jason M. Merlo¹, Samuel Wagner², John Lancaster², Jeffrey A. Nanzer¹

¹Electrical and Computer Engineering, Michigan State University, USA

²Lawrence Livermore National Laboratory, Livermore, CA, USA

EE MICROWAVE THEORY &

Motivation

Distributed Phased Array Receiver

Benefits

- Many small nodes make up array
 - Reduced deployment cost
 - Decreased thermal management requirements
 - Resilient to antenna / node failure
- Larger array sizes possible
 - Increased total gain / throughput
- Can operate over much larger frequency range

Applications

Connecting

Minds. Exchanging Ideas

System Time Model (Polynomial)

We2D-3

• Local time at node *n*:

$$T^{(n)}(t) = \sum_{k=0}^{K} \alpha_k^{(n)} t^k + \nu^{(n)} (t)$$

- *K*: time model polynomial order
- $\alpha_k^{(n)}$: kth clock drift coefficient at nth node
- -t : global true time
- $v_n(t)$: other zero-mean noise sources
- Goal:
 - Identify $\alpha_k \forall n$

System Time Model (Linear)

- Assumption:
 - Over short observation intervals time τ , higher order terms are negligible

 $\alpha_k \approx 0 \; \forall \; k > 1$

• Simplifies local time at node *n*:

$$T^{(n)}(t) = \alpha_1^{(n)}t + \alpha_0^{(n)} + \nu^{(n)}(t)$$

where:

- $\alpha_0^{(n)}$: time bias - $\alpha_1^{(n)}$: relative frequency scale In practice, α_k will be time-varying

We2D-3

Timing skew estimate:

$$\Delta^{(0,n)} = \frac{\left(T^{(0)}\left(t_{\text{RX}}^{(0)}\right) - T^{(n)}\left(t_{\text{TX}}^{(n)}\right)\right) - \left(T^{(n)}\left(t_{\text{RX}}^{(n)}\right) - T^{(0)}\left(t_{\text{TX}}^{(0)}\right)\right)}{2}$$

Inter-node range estimate:

 $D^{(0,n)}$

MS

—

Connecting Minds. Exchanging Ideas

$$= c \cdot \frac{\left(T^{(0)}\left(t_{\text{RX}}^{(0)}\right) - T^{(n)}\left(t_{\text{TX}}^{(n)}\right)\right) + \left(T^{(n)}\left(t_{\text{RX}}^{(n)}\right) - T^{(0)}\left(t_{\text{TX}}^{(0)}\right)\right)}{2}$$

One-Way Delay Estimation $-T_{RX}^{(n)}(t)$

The same process is repeated in the reverse direction from N_n to N_0

J. M. Merlo, S. R. Mghabghab and J. A. Nanzer, "Wireless Picosecond Time Synchronization for Distributed Antenna Arrays," in IEEE Transactions on Microwave Theory and Techniques, vol. 71, no. 4, pp. 1720-1731, April 2023, doi: 10.1109/TMTT.2022.3227878.

MTT-S

Time Offset Estimation Process

WINS Wireless Frequency Syntonization

- Two-tone transmitter with carrier spacing $f_{\rm ref}$
- Self-mixing receiver: Mixes received signal with itself, low-pass filters frequencies above f_{ref}
- Fundamental frequency f_{ref} received at output used to discipline local oscillators on the radio nodes (tracks $\alpha_1^{(n)}$)

S. R. Mghabghab and J. A. Nanzer, "Open-Loop Distributed Beamforming Using Wireless Frequency Synchronization," in IEEE Transactions on Microwave Theory and Techniques, vol. 69, no. 1, pp. 896-905, Jan. 2021, doi: 10.1109/TMTT.2020.3022385.

Carrier Model

• The carrier at any node

$$\Phi^{(n)}(t) = \exp\{j2\pi f_{c}T^{(n)}(t)\}\exp(j\phi^{(n)})$$

$$\alpha_{1}^{(n)}(t)t + \alpha_{0}^{(n)}(t) + \nu^{(n)}(t)$$

- To compensate, we must:
 - Calibrate the static phase rotations $\left(\phi_{\text{TX}}^{(n)}, \phi_{\text{RX}}^{(n)}\right) \rightarrow \left(\phi_{\text{TX,cal}}^{(n)}, \phi_{\text{RX,cal}}^{(n)}\right)$
 - Estimate and correct for $\alpha^{(n)}$ using wireless time and frequency transfer techniques

Transmit Signal

Receive Signal

• Received signal at each element (after compensation):

 $-\tau_d^{(m,l,n)}$: time delay of waveform transmitted from node *m*, reflecting off scatterer *l*, and received at node *n* Receivers

We2D-3

• Downrange matched filter: $s_{\rm mf}(t) = \mathcal{F}^{-1} \left\{ \mathcal{F} \left[\sum_{n=0}^{N} s_{\rm RX}^{(n)}(t) \right] S_{\rm TX}^* \right\}$

MTT-S EEE MICROWAVE THEORY &

System Schematic

Experimental Setup

Experimental Setup

Imagery ©2023 Google, map data ©2023

MTT-S EE MICROWAVE THEORY & CHNOLOGY SOCIETY

Static Measurement Results

NAVE THEORY 8

Label	RX0	RX1	BF	Realized Gain	
	dB	dB	dB	dB	%-ideal
А	12.082	11.508	14.570	2.765	94.5
В	13.221	12.240	13.340	0.581	57.2
С	7.057	8.307	10.172	2.445	87.8
D	8.993	8.508	11.037	2.279	84.5
Е	8.119	5.232	7.572	0.660	58.2
F	13.840	7.769	14.645	2.857	96.5
G	5.121	6.246	7.174	1.454	69.9
Н	3.916	6.478	5.516	0.133	51.6
Ι	5.323	1.121	5.544	1.832	76.2

Boldface values denote the highest received power after matched filtering

Dynamic Measurement Results

- Pedestrian walking with corner reflector
 - Started ~7 m away,
 walked to ~30 m
 then returned
- Absolute time corrections shown below
 - Indicates high level of timing accuracy once pedestrian >~15 m away

Conclusion

- Discussed a High accuracy time-frequency-phase coordinated coherent distributed phased array
- Demonstrated a 2×2 distributed coherent radar array in static and dynamic environments
- Static measurement performance summary:

Statiatia	Realized Receive Gain		
Statistic	dB	%-ideal	
Maximum	2.86	96.5	
Median	2.12	81.5	

Questions

Thank you to our project sponsors and collaborators:

Backup Slides

• The delay accuracy lower bound (CRLB) for time is given by

$$\operatorname{var}(\hat{\tau} - \tau) \geq \frac{1}{2\zeta_f^2} \cdot \frac{N_0}{E_s}$$

- ζ_f^2 : mean-squared bandwidth
- N_0 : noise power spectral density
- $-E_s$: signal energy
- $-\frac{E_s}{N_0}$: post-processed SNR

J. A. Nanzer and M. D. Sharp, "On the Estimation of Angle Rate in Radar," *IEEE T Antenn Propag*, vol. 65, no. 3, pp. 1339–1348, 2017, doi: 10.1109/tap.2016.2645785.

• Discrete matched filter (MF) used in initial time delay estimate

$$s_{\rm MF}[n] = s_{\rm RX}[n] \circledast s_{\rm TX}^*[-n]$$
$$= \mathcal{F}^{-1}\{S_{\rm RX}S_{\rm TX}^*\}$$

- High SNR typically required to disambiguate correct peak
- Many other waveforms exist which balance accuracy and ambiguity

J. M. Merlo, S. R. Mghabghab and J. A. Nanzer, "Wireless Picosecond Time Synchronization for Distributed Antenna Arrays," in IEEE Transactions on Microwave Theory and Techniques, vol. 71, no. 4, pp. 1720-1731, April 2023, doi: 10.1109/TMTT.2022.3227878.

Delay Estimation Refinement

- MF is biased due to time discretization limited by sample rate
- Refinement obtained using Quadratic Least Squares (QLS) fitting to find true delay from three sample points

$$\hat{\tau} = \frac{T_s}{2} \frac{s_{\rm MF}[n_{\rm max} - 1] - s_{\rm MF}[n_{\rm max} + 1]}{s_{\rm MF}[n_{\rm max} - 1] - 2s_{\rm MF}[n_{\rm max}] + s_{\rm MF}[n_{\rm max} + 1]}$$

where

$$n_{\max} = \underset{n}{\operatorname{argmax}} \{s_{\operatorname{MF}}[n]\}$$

J. M. Merlo, S. R. Mghabghab and J. A. Nanzer, "Wireless Picosecond Time Synchronization for Distributed Antenna Arrays," in IEEE Transactions on Microwave Theory and Techniques, vol. 71, no. 4, pp. 1720-1731, April 2023, doi: 10.1109/TMTT.2022.3227878.

Delay Estimation Refinement

- QLS results in small residual bias due to an imperfect representation of the underlying MF output
- Residual bias is a function of waveform and sample rate
- Can be corrected via lookup table based on where estimate falls within a bin

Predicted Bias for Two-Tone & LFM

J. M. Merlo, S. R. Mghabghab and J. A. Nanzer, "Wireless Picosecond Time Synchronization for Distributed Antenna Arrays," in IEEE Transactions on Microwave Theory and Techniques, vol. 71, no. 4, pp. 1720-1731, April 2023, doi: 10.1109/TMTT.2022.3227878.

Delay Estimation Refinement

- QLS results in small residual bias due to an imperfect representation of the underlying MF output
- Residual bias is a function of waveform and sample rate
- Can be corrected via lookup table based on where estimate falls within a bin

J. M. Merlo, S. R. Mghabghab and J. A. Nanzer, "Wireless Picosecond Time Synchronization for Distributed Antenna Arrays," in IEEE Transactions on Microwave Theory and Techniques, vol. 71, no. 4, pp. 1720-1731, April 2023, doi: 10.1109/TMTT.2022.3227878.