

Distributed Interferometric Radar for Radial and Angular Velocity Measurement

2024 IEEE International Symposium on Antennas and Propagation and ITNC-USNC-URSI Radio Science Meeting WE-A6.1P.1 | Focused session on challenges, advances and future trends on emerging applications of radar imaging

Jason M. Merlo and Jeffrey A. Nanzer Michigan State University, East Lansing, MI, USA

- 1. Overview and Motivation
- 2. Radar Interferometer Measurement Technique
- 3. Coordination Technique
- 4. Experimental Configuration and Measurement Results

Outline

Interferometric Distributed Aperture Sensing

Active distributed aperture interferometry utilizes grating or "fringe" patterns of sparse array to measure:

- 1. Instantaneous angular velocity for traditional radar sensing and tracking
- 2. Scene spatial frequency intensity for incoherent microwave/millimeter-wave imaging

WE-A6.1P.1

Interferometric Distributed Aperture Sensing

J. Merlo, E. Klinefelter, S. Vakalis and J. A. Nanzer, "A Multiple Baseline Interferometric Radar for Multiple Target Angular Velocity Measurement," in IEEE Microwave and

Active distributed aperture interferometry utilizes grating or "fringe" patterns of sparse array to measure:

- 1. Instantaneous angular velocity for traditional radar sensing and tracking
- 2. Scene spatial frequency intensity for incoherent microwave/millimeter-wave imaging

Wireless Components Letters, vol. 31, no. 8, pp. 937-940, Aug. 2021, doi: 10.1109/LMWC.2021.3079842.

Using multiple baselines, multiple targets may be tracked, or multiple spatial frequencies may be measured

Multi-Baseline Aperture Interferometer

WE-A6.1P.1

5

Interferometric Distributed Aperture Sensing

Active distributed aperture interferometry utilizes grating or "fringe" patterns of sparse array to measure:

- 1. Instantaneous angular velocity for traditional radar sensing and tracking
- 2. Scene spatial frequency intensity for incoherent microwave/millimeter-wave imaging

Using multiple baselines, multiple targets may be tracked, or multiple spatial frequencies may be measured Single-Baseline Aperture Interferometer

Wireless Aperture Interferometer

Benefits

- Many small nodes make up array
 - Reduced deployment cost
 - Decreased thermal management requirements
 - Resilient to antenna / node failure
- Larger array sizes possible
 - Increased targets possible to track
 - Increased spatial frequencies for imaging

Wireless Aperture Interferometer

Benefits

- Many small nodes make up array
 - Reduced deployment cost
 - Decreased thermal management requirements
 - Resilient to antenna / node failure
- Larger array sizes possible
 - Increased targets possible to track
 - Increased spatial frequencies for imaging

Wireless Aperture Interferometer

Challenges

- Stringent coordination requirements for
 - Time
 - Frequency
 - Element Position

Continuous-wave transmit signal

 $s_{\text{tx}}(t) = A(\theta) \exp(j2\pi f_0 t)$

ASSULT

Interferometric Radar Techniques

Continuous-wave transmit signal

 $s_{\text{tx}}(t) = A(\theta) \exp(j2\pi f_0 t)$

Baseband signals

 $r_{\mathrm{d}n}(t) = A(\theta) \exp(-j2\pi f_0 \tau_{\mathrm{d}n})$

Interferometric Radar Techniques

Continuous-wave transmit signal

 $s_{\text{tx}}(t) = A(\theta) \exp(j2\pi f_0 t)$

Baseband signals

 $r_{\mathrm{d}n}(t) = A(\theta) \exp(-j2\pi f_0 \tau_{\mathrm{d}n})$

Radial rate measurement (Doppler)

$$f_{dn}(t) = \frac{1}{2\pi} \frac{d\phi_{r_{dn}}(t)}{dt} = -\frac{d}{dt} f_0 \tau_{dn} = \frac{2v_{rn}}{\lambda}$$
$$\Rightarrow \qquad \hat{v}_{rn} \approx -f_{dn} \frac{\lambda}{2} (m/s)$$

Interferometric Radar Techniques

WE-A6.1P.1

Target

 r_2

 $r_{\rm d2}$

 R_2

Using
$$\omega = \frac{d\theta}{dt} \implies \theta = \omega t + \theta_0$$

 $f_{\omega} = \frac{1}{2\pi} \frac{d\phi_{r_c}(t)}{dt} = \omega D_{\lambda} \cos \theta$
 $\Rightarrow \qquad \widehat{\omega} \approx \frac{f_{\omega}}{D_{\lambda}} (rad/s)$
 $r_g = \tau$

J. A. Nanzer, "Millimeter-Wave Interferometric Angular Velocity Detection," in IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 12, pp. 4128-4136, Dec. 2010, doi: 10.1109/TMTT.2010.2086467.

WE-A6.1P.1

System Clock Model

• Local time at node *n*:

$$T^{(n)}(t) = \sum_{k=0}^{K} \alpha_k^{(n)} t^k + \nu^{(n)} (t)$$

- K: time model polynomial order
- $\alpha_k^{(n)}$: kth clock drift coefficient at nth node
- t : global true time
- $v_n(t)$: other zero-mean noise sources
- Goal:
 - Identify $\alpha_k \forall n$

Relative Clock Alignment

Wireless Frequency Syntonization

- Two-tone transmitter with carrier spacing $f_{\rm ref}$
- Self-mixing receiver: Mixes received signal with itself, low-pass filters frequencies above f_{ref}
- Fundamental frequency f_{ref} received at output used to discipline local oscillators on the radio nodes (tracks: $\alpha_k^{(n)}$ where k > 0)

S. R. Mghabghab and J. A. Nanzer, "Open-Loop Distributed Beamforming Using Wireless Frequency Synchronization," in IEEE Transactions on Microwave Theory and Techniques, vol. 69, no. 1, pp. 896-905, Jan. 2021, doi: 10.1109/TMTT.2020.3022385.

System Diagram

Legend

- Correlation Path
- Frequency Reference Path

- Two Ettus X310 SDRs were used on each node
- Each SDR covered one frequency band (3.3/2.3 GHz)
- Time alignment performed using GNSS PPS

Experimental Setup

Tangential Velocity Measurements

 $f_{\rm c}$ = 3.3 GHz

Pass 1

Pass 2

Tangential Velocity Measurements

 $f_{\rm c}$ = 2.3 GHz

Pass 1

Pass 2

- Discussed a technique for implementing wireless distributed aperture correlation interferometers
- Demonstrated a wireless distributed aperture interferometer simultaneously measuring both radial and tangential motion of a point scatterer carried by a pedestrian
- Results show a promising step towards larger distributed interferometric arrays

Questions?