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Reduced Cost
- Smaller, low-cost platforms
- Cost distributed over many nodes

Reconfigurable
- Adaptable sub-arrays to meet 

bandwidth and spatial requirements
Increased Robustness
- Nodes may be added or removed 

without failure of array
Increased Gain
- Transmission gain ∝ 𝑁!

- Reception gain ∝ 𝑀
- Total gain ∝ 𝑁!𝑀
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Distributed Array Applications and Benefits
Space Communication 

and Sensing
V2X Distributed 

Sensing
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Time Synchronization

Focus of this work

Distributed Array Coordination Challenges
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Phase AlignmentFrequency Syntonization
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Distributed Array Time Error Tolerance
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𝜎!/𝑇
Timing error <10% pulse duration Modulation requires stricter timing

Monotone Pulse LFM PulseProbability of 
coherent gain:

𝑃 𝐺% ≥ 𝑋

where

𝐺! =
𝑠"𝑠"∗

𝑠$𝑠$∗

• 𝑠): received signal

• 𝑠*: ideal signal
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≥
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9

𝜎!/𝑇𝑘/𝑓"

𝑃
𝐺 "
≥
0.
9



Pros
• Minimal information 

sharing required
• Channel errors 

corrected implicitly
Cons
• Can only transmit 

to base station (no 
beamsteering)

• Time consuming 
due to potentially 
large number of 
iterations
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Distributed Array Coordination Topologies
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Closed-Loop

WirelessCoordination
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Coherent
Beamforming

Base Station / Passive Target

Pros
• Compatible with 

noncooperative/
passive targets

• Arbitrary 
beamforming 
capability

Cons
• Stringent inter-node 

coordination 
requirements

• Channel errors to 
target location not 
inherently corrected

Open-Loop



System Time Model
• Time at node 𝑛:

𝑇$ 𝑡 = 𝑡 + 𝛿$(𝑡) + 𝜈$(𝑡)
• 𝑡 : true time
• 𝛿.(𝑡): time-varying bias

• Assumed quasi-static over synchronization 
epoch

• No further assumptions on distribution of 𝛿%
• 𝜈.(𝑡): other zero-mean noise sources
• Δ/.(𝑡) = 𝛿/(𝑡) − 𝛿.(𝑡)

• Goal: estimate and compensate for 𝛿$
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Pros
• Receiver nodes do not 

need to transmit
• One node can provide 

time to many anonymous 
receivers

Cons
• Channel must be well 

characterized to 
accurately determine and 
subtract propagation delay

• Positions and trajectories 
of nodes must be known

Time Transfer Techniques

8

One-Way Time Transfer
Pros
• Both nodes implicitly 

estimate channel delay
• Both nodes determine 

their relative offset
Cons
• Requires all nodes to 

have transmitters
• Time transfer must be 

performed pairwise 
• 𝑁 orthogonal 

channels required to 
synchronize 𝑁 nodes

Two-Way Time Transfer
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𝑣
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Two-Way Time Transfer Synchronization
• Assumptions
• Channel is quasi-static over 

synchronization epoch

• Propagation delay estimate:

𝜏/. =
(𝑡23/−𝑡43.) + (𝑡43/ − 𝑡23.)

2

• Timing skew estimate:

Δ/. =
(𝑡23/−𝑡43.) − (𝑡43/ − 𝑡23.)

2
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High Accuracy Time Delay Waveform
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• The delay accuracy lower bound 
(CRLB) for time is given by

var �̂� − 𝜏 ≥
1
2𝜁&'

⋅
𝑁(
𝐸)

• 𝜁&': mean-squared bandwidth
• 𝑁(: noise power spectral density
• 𝐸): signal energy

𝐸)
𝑁(

= 𝜏* ⋅ SNR ⋅ NBW

• 𝜏*: integration time
• SNR: signal-to-noise ratio
• NBW: noise bandwidth
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High Accuracy Time Delay Waveform
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var �̂� − 𝜏 ≥
1
2𝜁89

⋅
𝑁/
𝐸:

• For constant-SNR, maximizing 𝜁89 will 
yield improved delay estimation

𝜁89 = 9
;<

<

2𝜋𝑓 9 𝐺 𝑓 9𝑑𝑓

• 𝜁8 =>?
9 = 𝜋 ⋅ BW 9 ∕ 3

• 𝜁8 @AB;@BCD
9 = 𝜋 ⋅ BW 9
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Delay Estimation and Refinement
• Discrete matched filter (MF) used in 

initial time delay estimate
𝑠"# 𝑛 = 𝑠$% 𝑛 ⊛ 𝑠&%∗ [−𝑛]

= ℱ() 𝑆$%𝑆&%∗

• Two-tone matched filter waveform is 
highly ambiguous

• High SNR or narrow-band pulse 
required to disambiguate peaks
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Delay Estimation and Refinement
• MF causes estimator bias due to time discretization

• Refinement of MF obtained using Quadratic Least 
Squares (QLS) fitting to find true delay based on 
three sample points

�̂� =
𝑇)
2

𝑠+, 𝑛-./ − 1 − 𝑠+, 𝑛-./ + 1
𝑠+, 𝑛-./ − 1 − 2𝑠+, 𝑛-./ + 𝑠+, 𝑛-./ + 1

where
𝑛-./ = argmax

%
𝑠+,[𝑛]
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Delay Estimation and Refinement
• QLS results in small residual bias 

due to an imperfect representation 
of the underlying MF output

• Residual bias is a function of 
waveform and sample rate

• Can be easily corrected via lookup 
table
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3 | Experimental Results

Experimental Time Synchronization Setup

• Time Transfer Waveform
• 𝑓# = 5.9 GHz
• BW = 50 MHz (tone separation)
• 𝜏$%&'()*++ = 50 ns (rise-fall time)
• 𝜏, = 10 𝜇s (pulse duration)
• 𝜏&-./ = 50.01 ms (synchronization epoch)

• Antenna
• 5.9 GHz, 13.2 dBi Yagi-Uda antennas

• SDR
• 𝑓0 = 200 MSa/s (sample rate)
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Experimental Time Synchronization Setup



• Time transfer st. dev. was 
estimated on SDR using 
time update deltas

• Beamforming st. dev. was 
estimated  by cross-
correlating received 
waveforms on 
oscilloscope

• Inter-channel bias was 
<10 ps after calibration
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Time-Transfer and Beamforming Precision
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• Using spectrally-sparse two-tone pulses, theoretical maximum time-delay 
estimation may be achieved
• Approach experimentally validated using two-way time synchronization on 

software-defined radios
• Using a 50 MHz signal bandwidth, precisions of

• ~2 ps for two-way time transfer
• ~7 ps for beamforming

are achieved
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