5.8-GHz FMCW Radar System for Drone Tracking

Jason Merlo, Stavros Vakalis, Cory Hilton, and Jacob Randall (supervisor: Dr. Jeffrey A. Nanzer) Michigan State University

2020 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting

Introduction

- Significant increase in the consumer drones poses many challenges in every day life
- Potential misuse could lead in violations of privacy, safety and property damage
- Radar is a great candidate for wireless aerial sensing
- Many radar works have worked on the micro-Doppler response for classification, but not as much for drone tracking.

Drone picture from

https://www.nytimes.com/2020/01/01/us/drone s-FAA-colorado-nebraska.html

Theory and Signal Processing

Differentiating the drone

- Drone reflection can be very weak compared to the clutter
- Is there any information about the drone we could use to differentiate it?
- Turns out drone have a very unique velocity spectrum

Range-Doppler map

MICHIGAN STATE

Algorithm overview

Radar System Design

Radar System – Architecture

- Transmitter
 - TI LMX2491 PLL and Ramp Generator
 - Qorvo 32 dB Power Amplifier with variable attenuation
- Receiver 4x
 - ADI 14.5 dB LNA
 - ADI Active IQ downconverter
 - Active IF filters
- Data Acquisition
 - Measurement computing USB-1608-Plus
 - 100 kSps 8-channel simultaneously sampling

Radar system schematic

Radar System – Architecture

• Power

- 10.8–13.2V Power Input
- 10V, 5.5V, 5.25V, 5.0V, 3.3V, and 3.0V rails were required
- Ferrites and decoupling capacitors were added to further isolate devices
- Noise Isolation
 - Board was sectioned by device sensitivity to noise and noise emission of device
 - Via fencing used to isolate sections
 - Via stitching used between multi-level ground planes

Radar System – Planar Elements

- 3 dB Wilkinson Divider
 - Used in:
 - PLL feedback and transmitter split
 - 1:4 splitter for IQ demodulator LO drive inputs
- 14 dB Coupled-line Coupler
 - Used in transmitter split into 1:4 splitter for LO drives
- SMA To Microstrip Transition
 - Initial test board showed ~10 dB loss at SMA transition
 - Coplanar to microstrip transition
 - Removed ground planes below pin
 - Achieved minimal reflection by optimizing the length and width of the spacing from the center conductor at the transition
 - Reduced transition loss from ~10 dB to ~0.3 dB

3 dB Wilkinson Divider

14 dB Coupler

Substrate Characterization Test Board

SMA To Microstrip Transition Render

SMA To Microstrip Transition Simulation

Radar System – Assembly

Antenna Design

Antenna Theory

- Antenna Dimensions¹: $W = \frac{c}{2f_0\sqrt{\frac{\varepsilon_R+1}{2}}}; \quad \varepsilon_{eff} = \frac{\varepsilon_R+1}{2} + \frac{\varepsilon_R-1}{2} [\frac{1}{\sqrt{1+12(\frac{h}{W})}}]$ $L = \frac{c}{2f_0\sqrt{\varepsilon_{eff}}} - .824h(\frac{(\varepsilon_{eff}+0.3)(\frac{W}{h}0.264)}{(\varepsilon_{eff}-.258)(\frac{W}{h}+0.8)})$
- Microstrip Dimensions: Calculated via LineCalc

1. C. A. Balanis, Antenna theory: analysis and design. John wiley & sons, 2016.

				Physical				2	
ID MSUB_DEFAULT V				W	0.345782	mm	•		
Er	3.640	N/A	- ^	L	1000.000	mm	-		
Mur	1.000	N/A	*			N/A	*		
н	0.170	mm	-			N/A	*		
Hu	1e20	mm	•	Synthesize A		yze			
т	0.035	mm	-			▼		Calculated Results	
Cond	5.8e7 N/A -			Electrical				A_DB = 12.081	
TanD	0.000	Lau/a	~	ZO	50.000000	Ohm	-	SkinDepth = 0.034	
Component Parameters				E_Eff	11460.600000	deg	-		
Freq	5.800	GHz	GHz •			N/A	-		
Wall 1		mil	-			N/A	-		
Wall2		mil	-			N/A			

2x2 Simulated Measurements

MICHIGAN STATE

4x4 Simulated Measurements

Gain Simulated

MICHIGAN STATE

Measured S11 Response

Measured S11 for 2x2 and 4x4 Arrays

Manufactured Antennas

- Estimated 1.5% over-etching
 - Mask dilated to compensate
- Side feed employed to minimize coupling
- Feed line of 50Ω to100Ω branching with quarter-wave transformer network

Radar Setup

Antenna Application

- 4x4 array beamwidth estimated to be 30 degrees
- 2x2 array beamwidth estimated to be 60 degrees
- 4x4 array has more focused beamwidth compared to 2x2
 - Improves DoA range performance
 - Reduces DoA field of view

Software Implementation

AP-S Radar Dashboard – Software Architecture

MICHIGAN STATE

Experimental Results

Conclusions

All software and hardware for this project may be found at:

https://gitlab.msu.edu/delta/aps2020-competition