

Wireless Time and Phase Alignment for Wideband Beamforming in Distributed Phased Arrays

2023 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting TU-A1.1A.9 | Advances in Phased Array Antennas

LLNL-PRES-851645

Jason M. Merlo and Jeffrey A. Nanzer Michigan State University, East Lansing, MI, USA

1. Overview & Applications

- 2. Array Coordination
- 3. Distributed Phased Array Beamsteering
- 4. Experimental Results

Outline

Distributed Phased Array Overview

Traditional Phased Array

Distributed Phased Array

Distributed Phased Array Applications

Distributed Phased Array Synchronization

Distributed Phased Array Performance

Probability of coherent gain:

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

(6.0)

ΛI

 $P(G_c$

where

- s_r : received signal
- s_i : ideal signal

Timing error <10% pulse duration

Modulation requires stricter timing

- [1] J. A. Nanzer, R. L. Schmid, T. M. Comberiate and J. E. Hodkin, "Open-Loop Coherent Distributed Arrays," in IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 5, pp. 1662-1672, May 2017, doi: 10.1109/TMTT.2016.2637899.
- [2] P. Chatterjee and J. A. Nanzer, "Effects of time alignment errors in coherent distributed radar," in Proc. IEEE Radar Conf. (RadarConf), Apr. 2018, pp. 0727–0731.

System Time Model

• Local time at node *n*:

$$T_n(t) = t + \delta_n(t) + \nu_n(t)$$

- *t* : true time
- $\delta_n(t)$: time-varying offset from global true time
- $v_n(t)$: other zero-mean noise sources
- $\Delta_{0n}(t) = T_0(t) T_n(t)$
- Goal:
 - Estimate and compensate for Δ_{0n}

Relative Clock Alignment

Time Synchronization Technique

Two-Way Time Synchronization

- Assumptions:
 - Link is <u>quasi-static</u> and <u>reciprocal</u> during the synchronization epoch
- Timing skew estimate:

$$\Delta_{0n} = \frac{(T_{\rm RX0} - T_{\rm TXn}) - (T_{\rm RXn} - T_{\rm TX0})}{2}$$

For compactness of notation: $T_m(t_{TXn}) = T_{TXn}$

8

High Accuracy Delay Estimation

• The delay accuracy lower bound (CRLB) for time is given by

$$\operatorname{var}(\hat{\tau} - \tau) \ge \frac{1}{2\zeta_f^2} \cdot \frac{N_0}{E_s}$$

- ζ_f^2 : mean-squared bandwidth
- N_0 : noise power spectral density
- E_s : signal energy

$$\frac{E_s}{N_0} = \tau_p \cdot \text{SNR} \cdot \text{NBW}$$

- τ_p : integration time
- SNR: signal-to-noise ratio
- NBW: noise bandwidth

^[3] J. A. Nanzer and M. D. Sharp, "On the Estimation of Angle Rate in Radar," *IEEE T Antenn Propag*, vol. 65, no. 3, pp. 1339–1348, 2017, doi: 10.1109/tap.2016.2645785.

High Accuracy Delay Estimation

$$\operatorname{var}(\hat{\tau} - \tau) \ge \frac{1}{2\zeta_f^2} \cdot \frac{N_0}{E_s}$$

• For constant-SNR, maximizing ζ_f^2 will yield improved delay estimation

$$\zeta_f^2 = \int_{-\infty} (2\pi f)^2 |G(f)|^2 df$$

•
$$\zeta_{f(LFM)}^2 = (\pi \cdot \mathrm{BW})^2 / 3$$

•
$$\zeta_{f(\text{two-tone})}^2 = (\pi \cdot \text{BW})^2$$

^[3] J. A. Nanzer and M. D. Sharp, "On the Estimation of Angle Rate in Radar," *IEEE T Antenn Propag*, vol. 65, no. 3, pp. 1339–1348, 2017, doi: 10.1109/tap.2016.2645785.

Delay Estimation

• Discrete matched filter (MF) used in initial time delay estimate

$$s_{\rm MF}[n] = s_{\rm RX}[n] \circledast s_{\rm TX}^*[-n]$$
$$= \mathcal{F}^{-1}\{S_{\rm RX}S_{\rm TX}^*\}$$

- Two-tone matched filter waveform is highly ambiguous
- High SNR or narrow-band pulse required to disambiguate peaks

Delay Estimation Refinement

- MF causes estimator bias due to time discretization
- Refinement of MF obtained using Quadratic Least Squares (QLS) fitting to find true delay based on three sample points

$$\hat{\tau} = \frac{T_s}{2} \frac{s_{\rm MF}[n_{\rm max} - 1] - s_{\rm MF}[n_{\rm max} + 1]}{s_{\rm MF}[n_{\rm max} - 1] - 2s_{\rm MF}[n_{\rm max}] + s_{\rm MF}[n_{\rm max} + 1]}$$

where

$$n_{\max} = \underset{n}{\operatorname{argmax}} \{s_{\text{MF}}[n]\}$$

System Configuration

System Configuration

System State Flow

Beamforming Measurements Target Location ~0°; Internode Range ~1.25m

Direct Measurements

Beamforming Error

----- Target Location Angle

Total Error (All Freq. & Angle) : μ_{τ} = -42.28 ps , σ_{τ} = 55.59 ps and μ_{ϕ} = -37.09°, σ_{ϕ} = 47.96°

Beamforming Measurements Target Location ~0°; Internode Range ~1.25m

Range Compensated Beamforming Error

(Mean ranging bias removed)

----- Target Location Angle

Total Range-Compensated Error: μ_{τ} = 19.42 ps , σ_{τ} = 43.26 ps and μ_{ϕ} = 36.22°, σ_{ϕ} = 35.76°

Beamforming Measurements Target Location ~20°; Internode Range ~1.25m

Direct Measurements

Beamforming Error

---- Target Location Angle

Total Error (All Freq. & Angle) : $\mu_{\tau} = -122.97$ ps , $\sigma_{\tau} = 145.17$ ps and $\mu_{\phi} = -90.09^{\circ}$, $\sigma_{\phi} = 70.85^{\circ}$

$\frac{1}{12}$ 75 mm $\frac{1}{1}$ \bigwedge \bigwedge \bigwedge

Internode Ranging Bias $(D_n - \widetilde{D}_n)$

Beamforming Measurements Target Location ~20°; Internode Range ~1.25m

Range Compensated Beamforming Error

(Mean ranging bias removed)

---- Target Location Angle

Total Range-Compensated Error: $\mu_{\tau} = -158.88 \text{ ps}$, $\sigma_{\tau} = 140.36 \text{ ps}$ and $\mu_{\phi} = -132.76^{\circ}$, $\sigma_{\phi} = 67.29^{\circ}$

Conclusion

- Discussed high accuracy time-frequency-phase synchronization technique using pulsed two-tone time/range estimation and continuous two-tone frequency transfer
- Demonstrated fully-wireless time-frequency-phase synchronized distributed array beamformer

Steering Angle	Absolute Error			Range Compensated Error		
	Time (ps)	Phase (°)	Max BPSK*	Time (ps)	Phase (°)	Max BPSK*
0°	55.6	48.0	1.8 Gbps	43.3	35.8	2.3 Gbps
20°	145.2	70.8	688 Mbps	140.4	67.3	712 Mbps

* Maximum theoretical BPSK throughput; $G_c \ge 0.9$

Questions?

Thank you to our project sponsors and collaborators:

This work was supported under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DEAC52-07NA27344, by the LLNL-LDRD Program under Project No. 22-ER-035, by the Office of Naval Research under grant #N00014-20-1-2389, and by the National Science Foundation under Grant #1751655.

Backup Slides

System Configuration 1

ASSUE

Legend

System Configuration 1

Beamforming Measurements (1) Target Location ~0°; Internode Range ~1.5m

Direct Measurements

Beamforming Error

----- Target Location Angle

Total Error (All Freq. & Angle) : μ_{τ} = 131.44 ps , σ_{τ} = 109.29 ps and μ_{ϕ} = 155.96°, σ_{ϕ} = 98.00°

Beamforming Measurements (1) Target Location ~0°; Internode Range ~1.5m

Range Compensated Beamforming Error

(Mean ranging bias removed)

Total Range-Compensated Error: μ_{τ} = 20.47 ps , σ_{τ} = 69.33 ps and μ_{ϕ} = 28.11°, σ_{ϕ} = 21.69°

Experimental Configurations

Configuration 1

Configuration 2

Synchronization Parameter	Method	Synchronization Parameter	Method
Time	Wireless	Time	Wireless
Phase / Range	Wireless	Phase / Range	Wireless
Frequency	Wired	Frequency	Wireless

Objectives

• Demonstrate **baseline performance** of time—phase synchronization strategy with frequency hopping

Objectives

- Demonstrate fully wireless phased array beamforming performance with frequency hopping
- Demonstrate beamforming with varying internode distance

Experimental Setup

