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Coherent Distributed Array Overview

C03-4 | Emerging Technologies for Radar & Communications 2

Far-Field Information Wavefront

Far-Field Information Wavefront

Traditional Phased Array Distributed Phased Array

Time Synchronization

Frequency Synchronization



Single-platform 
resolution

Distributed array
resolution

Precision 
Agricultural Sensing

Distributed V2X Sensing Space Communication 
and Remote Sensing

Next Generation Satellite 
Cellular Networks

Receiver or 
imaging target

Earth-Based 
communication 
base station

Sensing and
communication

relay satellite
constellation

Coherent Distributed Array Applications
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Coherent Distributed Array Synchronization
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Coherent Distributed Array Performance
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System Time Model
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• Local time at node 𝑛:
𝑇$ 𝑡 = 𝛼$𝑡 + 𝛿$ 𝑡 + 𝜈$(𝑡)

• 𝛼!: time rate of change
• 𝑡 : true time
• 𝛿!(𝑡): time-varying offset from global 

true time
• 𝜈!(𝑡): other zero-mean noise sources
• Δ"!(𝑡) = 𝑇"(𝑡) − 𝑇!(𝑡) 

• Goal: 
• Estimate and compensate for Δ"! 

𝑁0

𝑁𝑛

𝑅

Node: 0

Node: 𝑛 Δ67

Relative Clock Alignment



Time Synchronization Overview
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Two-Way Time Synchronization

• Assumptions:
• Link is reciprocal ⟹ quasi-static 

during the synchronization epoch

• Timing skew estimate:

Δ67 =
(𝑇896−𝑇:97) − (𝑇897 − 𝑇:96)

2

For compactness of notation: 𝑇% 𝑡&'# = 𝑇&'#
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High Accuracy Delay Estimation
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• The delay accuracy lower 
bound (CRLB) for time is given 
by
 

var 𝜏̂ − 𝜏 ≥
1
2𝜁;<

⋅
𝑁6
𝐸=

• 𝜁;<: mean-squared bandwidth
• 𝑁6: noise power spectral density
• 𝐸=: signal energy
• >!
?"

: post-processed SNR
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High Accuracy Delay Estimation
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• For constant-SNR, maximizing 𝜁;< 
will yield improved delay estimation
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Delay Estimation
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• Discrete matched filter (MF) used 
in initial time delay estimate
 
𝑠9: 𝑛 = 𝑠;< 𝑛 ⊛ 𝑠=<∗ [−𝑛]	

= ℱ?@ 𝑆;<𝑆=<∗

• High SNR typically required to 
disambiguate correct peak

• Many other waveforms exist which 
balance accuracy and ambiguity
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Delay Estimation Refinement
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• MF causes estimator bias due to time 
discretization limited by sample rate

• Refinement of MF obtained using Quadratic 
Least Squares (QLS) fitting to find true delay 
based on three sample points

𝜏̂ =
𝑇*
2

𝑠+, 𝑛-./ − 1 − 𝑠+, 𝑛-./ + 1
𝑠+, 𝑛-./ − 1 − 2𝑠+, 𝑛-./ + 𝑠+, 𝑛-./ + 1

   where
𝑛KLM = argmax

7
𝑠NO[𝑛]



43

Time Estimation Process
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System Configuration
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System Configuration
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System State Flow
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System Performance Evaluation
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System and Inter-Pulse Arrival Time Differences
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Single Scatterer Multiple Scatterers

*

* Maximum theoretical BPSK throughput; Pr 𝑮𝒄 ≥ 𝟎. 𝟗 > 𝟎. 𝟗



Inter-Pulse Arrival Phase Differences
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* Maximum theoretical carrier frequency; Pr 𝑮𝒄 ≥ 𝟎. 𝟗 > 𝟎. 𝟗

Single Scatterer Multiple Scatterers

*



Conclusion
• Discussed our technique for high accuracy wireless time-frequency 

synchronization for distributed antenna arrays

• Demonstrated time and frequency synchronization performance in multiple 
wireless non-line-of-sight scenarios
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* Maximum theoretical BPSK throughput; Pr 𝑮𝒄 ≥ 𝟎. 𝟗 > 𝟎. 𝟗
† Maximum theoretical carrier frequency; Pr 𝑮𝒄 ≥ 𝟎. 𝟗 > 𝟎. 𝟗

Scenario
System Error Beamforming Error

Time (ps) Time (ps) Max BPSK* 
(Gbps) Phase (°) Max Freq.†

(GHz)

Single Scatterer 7.19 21.81 4.59 11.04 5.71

Multiple Scatterer 12.69 32.44 3.08 43.30 1.45
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System Configuration
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System Configuration
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System Time and Inter-Pulse Arrival Differences
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Fully wireless time-frequency transfer:
• System time accuracy: 8.84 ps
• Cabled beamforming accuracy: 23.17 ps

• Max. data rate: 4.3 Gb/s
• Cabled beamforming phase accuracy: 10° @ 3.5 GHz

• Max. beamforming frequency: 8.4 GHz

Wired frequency transfer (wireless time transfer):
• System time accuracy: 5.93 ps
• Cabled beamforming accuracy: 17.67 ps

• Max. data rate: 5.6 Gb/s
• Cabled beamforming phase accuracy: 0.67° @ 3.5 GHz

• Max. beamforming frequency: 125 GHz

Note:
Each SNR taken with 
~40 data points over 
~1 minute
More points would 
likely smooth out the 
curves


