

Picosecond Non-Line-of-Sight Wireless Time and Frequency Synchronization for Coherent Distributed Aperture Antenna Arrays

2023 URSI General Assembly and Scientific Symposium

C03-4 | Emerging Technologies for Radar & Communications

LLNL-PRES-853249

Jason M. Merlo and Jeffrey A. Nanzer

Michigan State University, East Lansing, MI, USA

Coherent Distributed Array Overview

Traditional Phased Array

Distributed Phased Array

Coherent Distributed Array Applications

Coherent Distributed Array Synchronization

Coherent Distributed Array Performance

Barker Code (13-bit)

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0.05

(6.0)

ΛI

 $P(G_c$

Probability of coherent gain:

where

- s_r : received signal
- s_i : ideal signal

6. 0.9 0.8 0 0.70.6 ΛI 0.5 $P(G_c$ 0.4 N = 2N = 50 0.02 N = 100.04 0.06 0.08 N = 200.05 0.15 0.1 0.25 0.2 0.1 0.3 k/f_c 0.1 0.15 0.2 0.25 0.3 $\sigma_{\tau}/$ σ_{τ}/T

Timing error <10% pulse duration

Modulation requires stricter timing

Linear Frequency Modulated

- [1] J. A. Nanzer, R. L. Schmid, T. M. Comberiate and J. E. Hodkin, "Open-Loop Coherent Distributed Arrays," in IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 5, pp. 1662-1672, May 2017, doi: 10.1109/TMTT.2016.2637899.
- [2] P. Chatterjee and J. A. Nanzer, "Effects of time alignment errors in coherent distributed radar," in Proc. IEEE Radar Conf. (RadarConf), Apr. 2018, pp. 0727–0731.

System Time Model

• Local time at node *n*:

 $T_n(t) = \alpha_n t + \delta_n(t) + \nu_n(t)$

- α_n : time rate of change
- *t* : true time
- $\delta_n(t)$: time-varying offset from global true time
- $v_n(t)$: other zero-mean noise sources
- $\Delta_{0n}(t) = T_0(t) T_n(t)$
- Goal:
 - Estimate and compensate for Δ_{0n}

Time Synchronization Overview

Two-Way Time Synchronization

- Assumptions:
 - Link is <u>reciprocal</u> \Rightarrow <u>quasi-static</u> during the synchronization epoch
- Timing skew estimate:

$$\Delta_{0n} = \frac{(T_{\rm RX0} - T_{\rm TXn}) - (T_{\rm RXn} - T_{\rm TX0})}{2}$$

For compactness of notation: $T_m(t_{TXn}) = T_{TXn}$

High Accuracy Delay Estimation

 The delay accuracy lower bound (CRLB) for time is given by

$$\operatorname{var}(\hat{\tau} - \tau) \geq \frac{1}{2\zeta_f^2} \cdot \frac{N_0}{E_s}$$

- ζ_f^2 : mean-squared bandwidth
- N_0 : noise power spectral density
- E_s: signal energy
- $\frac{E_s}{N_0}$: post-processed SNR

[3] J. A. Nanzer and M. D. Sharp, "On the Estimation of Angle Rate in Radar," *IEEE T Antenn Propag*, vol. 65, no. 3, pp. 1339–1348, 2017, doi: 10.1109/tap.2016.2645785.

High Accuracy Delay Estimation

$$\operatorname{var}(\hat{\tau} - \tau) \ge \frac{1}{2\zeta_f^2} \cdot \frac{N_0}{E_s}$$

• For constant-SNR, maximizing ζ_f^2 will yield improved delay estimation

$$\zeta_f^2 = \int_{-\infty} (2\pi f)^2 |G(f)|^2 df$$

•
$$\zeta_{f(LFM)}^2 = (\pi \cdot \mathrm{BW})^2 / 3$$

•
$$\zeta_{f(\text{two-tone})}^2 = (\pi \cdot \text{BW})^2$$

^[3] J. A. Nanzer and M. D. Sharp, "On the Estimation of Angle Rate in Radar," *IEEE T Antenn Propag*, vol. 65, no. 3, pp. 1339–1348, 2017, doi: 10.1109/tap.2016.2645785.

C03-4 | Emerging Technologies for Radar & Communications

Delay Estimation

• Discrete matched filter (MF) used in initial time delay estimate

$$s_{\rm MF}[n] = s_{\rm RX}[n] \circledast s_{\rm TX}^*[-n]$$
$$= \mathcal{F}^{-1}\{S_{\rm RX}S_{\rm TX}^*\}$$

- High SNR typically required to disambiguate correct peak
- Many other waveforms exist which balance accuracy and ambiguity

Delay Estimation Refinement

- MF causes estimator bias due to time discretization limited by sample rate
- Refinement of MF obtained using Quadratic Least Squares (QLS) fitting to find true delay based on three sample points

$$\hat{\tau} = \frac{T_s}{2} \frac{s_{\rm MF}[n_{\rm max} - 1] - s_{\rm MF}[n_{\rm max} + 1]}{s_{\rm MF}[n_{\rm max} - 1] - 2s_{\rm MF}[n_{\rm max}] + s_{\rm MF}[n_{\rm max} + 1]}$$

where

$$n_{\max} = \underset{n}{\operatorname{argmax}} \{s_{\text{MF}}[n]\}$$

Time Estimation Process

System Configuration

System Configuration

Single Scatterer // "No Clutter"

Multiple Scatterers // "With Clutter"

System State Flow

Where

 $\tilde{\tau}_{bf,n} \rightarrow \text{estimated beamforming time of arrival of pulse transmitted by node } n$ $\tilde{\phi}_{bf,n} \rightarrow \text{estimated beamforming phase of pulse transmitted by node } n$

* Maximum theoretical BPSK throughput; $Pr(G_c \ge 0.9) > 0.9$

Inter-Pulse Arrival Phase Differences

* Maximum theoretical carrier frequency; $Pr(G_c \ge 0.9) > 0.9$

Conclusion

- Discussed our technique for high accuracy wireless time-frequency synchronization for distributed antenna arrays
- Demonstrated time and frequency synchronization performance in multiple wireless non-line-of-sight scenarios

Scenario	System Error		Beamforming Error		
	Time (ps)	Time (ps)	Max BPSK* (Gbps)	Phase (°)	Max Freq. [†] (GHz)
Single Scatterer	7.19	21.81	4.59	11.04	5.71
Multiple Scatterer	12.69	32.44	3.08	43.30	1.45

* Maximum theoretical BPSK throughput; $Pr(G_c \ge 0.9) > 0.9$

[†] Maximum theoretical carrier frequency; $Pr(G_c \ge 0.9) > 0.9$

Questions?

Thank you to our project sponsors and collaborators:

This work was supported under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DEAC52-07NA27344, by the LLNL-LDRD Program under Project No. 22-ER-035, by the Office of Naval Research under grant #N00014-20-1-2389, and by the National Science Foundation under Grant #1751655.

Backup Slides

System Configuration

System Configuration

System Time and Inter-Pulse Arrival Differences

Note:

Each SNR taken with ~40 data points over ~1 minute

More points would likely smooth out the curves

Wired frequency transfer (wireless time transfer):

- System time accuracy: 5.93 ps
- Cabled beamforming accuracy: 17.67 ps
 - Max. data rate: 5.6 Gb/s
- Cabled beamforming phase accuracy: 0.67° @ 3.5 GHz
 - Max. beamforming frequency: 125 GHz

Fully wireless time-frequency transfer:

- System time accuracy: 8.84 ps
- Cabled beamforming accuracy: 23.17 ps
 - Max. data rate: 4.3 Gb/s
- Cabled beamforming phase accuracy: 10° @ 3.5 GHz
 - Max. beamforming frequency: **8.4 GHz**