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Applications of Coherent Distributed Arrays
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Coherent Distributed Array Synchronization i
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System Time Model

e _ocal time at node n:
T,(t) =t + 8,(t) + vu(t)

e t : true time

* §,,(t): time-varying offset from
global true time

* v, (t): other zero-mean noise
sources

* Don(t) = To(t) — T ()
» Goal:
» Estimate and compensate for A,,
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Time Synchronization Overview

Two-Way Time Synchronization

« Assumptions:

 Link is reciprocal = quasi-static
during the synchronization epoch

* Timing skew estimate:

_ (Trxo—Ttxn) — (TrRxn — TTx0)

A
on 2

 Inter-node range estimate:

. (Trxo—Ttxn) + (TrRxn — TTx0)

Do =

For compactness of notation: T, (ttxn) = Trxn
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High Accuracy Delay Estimation

NS I
* The delay accuracy lower = 1000 2
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[3] J.A.Nanzerand M. D. Sharp, “On the Estimation of Angle Rate in Radar,” IEEE T Antenn Propag, vol. 65, no. 3, pp. 1339-1348, 2017, doi:
10.1109/tap.2016.2645785.
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High Accuracy Delay Estimation
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[3] J.A.Nanzerand M. D. Sharp, “On the Estimation of Angle Rate in Radar,”
10.1109/tap.2016.2645785.
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Delay Estimation

 Discrete matched filter (MF) used in
initial time delay estimate

smrln] = sgxln] ® spx[—n]
= FY{SrxStx}

* High SNR typically required to
disambiguate correct peak

 Many other waveforms exist which
balance accuracy and ambiguity

N.U.
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Delay (s)
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[4] J. M. Merlo, S. R. Mghabghab and J. A. Nanzer, "Wireless Picosecond Time Synchronization for Distributed Antenna Arrays," in IEEE Transactions on
Microwave Theory and Techniques, vol. 71, no. 4, pp. 1720-1731, April 2023, doi: 10.1109/TMTT.2022.3227878.
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Delay Estimation Refinement

* MF causes estimator bias due to time ¥

discretization limited by sample rate 10" i
* Refinement of MF obtained using Quadratic 0.8 - |
Least Squares (QLS) fitting to find true delay { 1
based on three sample points R [ ]
2 = T SMF[Mmax — 1] — smp[Mmax + 11 | —— MF Out.
— 9 QLS Interp.
2 syrlnmax — 11 — 2smp[nmax] + smrlnmax + 11 K& = | . True SGTEZS
i MF Peak Est.
0.0 - s Int. Points
where | ¥ | |
Nmax = argmax{syge[n]} 11.98 p 12 12.02 p 12.04 p

Delay (s)

n

[4] J. M. Merlo, S. R. Mghabghab and J. A. Nanzer, "Wireless Picosecond Time Synchronization for Distributed Antenna Arrays," in IEEE Transactions on
Microwave Theory and Techniques, vol. 71, no. 4, pp. 1720-1731, April 2023, doi: 10.1109/TMTT.2022.3227878.
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Delay Estimation Refinement

« QLS results in small residual bias L _qebee
due to an imperfect representation 0015 - ! ! ! - 75
of the underlying MF output 5 0010 - —— Two-Tone _ 5o
2 0.005 - = 25 p
* Residual bias is a function of 5 000 0
waveform and sample rate § _0.005 - - 25p
g -0.010 - - =30p
« Can be easily corrected via lookup ~0.015 - - _75p
table —(;.4 —(;.2 ofo ofz of4

True Delay (bins)

[4] J. M. Merlo, S. R. Mghabghab and J. A. Nanzer, "Wireless Picosecond Time Synchronization for Distributed Antenna Arrays," in IEEE Transactions on
Microwave Theory and Techniques, vol. 71, no. 4, pp. 1720-1731, April 2023, doi: 10.1109/TMTT.2022.3227878.
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Software Challenges

1. High/full sample rate with low CPU utilization
- Use “bursty” transmission scheme

2. Reasonably low latency
- Use message/PDU-based flowgraph

3. Maintain groupings of PDUs for each channel
transmitted/received

— Use lists of PDUs; initially created a “Wide PDU” type, but switched for
compatibility with existing codebase
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Software Guiding Principles

* Code reusability
- Implemented on top of DELTA Python Package for code reusability

* Implementation/iteration speed

— Scientific processing implemented in Python first, data manipulation in
C++

- Benchmark, re-implement in C++ if necessary
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Time Estimation Process

Generate Matched Peak- QLS
Waveform Filter Find Estimate

TX Window

! RX Window Processing
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Filter Estimate Waveform determine corrections
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Time Transfer Flow Graph

Virtual Source
Stream ID: time_burst_mux

Virtual Source
Stream ID: bias_update

Virtual Source
Stream ID: sync_burst_rx_out

N"'P' send

;"»E

Wavegen (py)

Log Level: INFO
cal

Waveform List: wfm_...wo_tone | ref wfml- -

out veck - -~

Vector Operation (py)
Function: lambda...or y in x]
Log Level: WARN

outt - - - - »{in|

out wfmI

Virtual Sink
Stream ID: mf_out

Start: 250
Stop: 10k
Step: 250

QT GUI Range
ID: sync_period
Label: Auto Sync. Period (ms)
Default Value: 500

Message Strobe

Iset msa Message PMT:

Period (ms): 500

PDU Matched Filter (py)
Channel List: 0, 2
Reference Waveform List: None
MF Mode: same
Log Level: INFO

Start Value:
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PDU QLS Peak Est. (py)
-29.9975u
Step Size: 5n

RF Center Freq.: 2.5G ¢
E- -— PE Waveform Type: two-tone
Sample Rate: 200M
Waveform Bandwidth: 40M
Correction File Path:

Log Level: WARN

Samples: 6k
Sample Rate (Sps): 200M

Burst Delay (s): 1m
Device Arguments: ad...8.11.2
Wire Format: sc16

PPS Source List: int...ternal
TX Stream Channels: 0,1,2,3
TX Gain (dB): 21.0...1.0,10.0
TX Port: TX/RX,T..X/RX,TX/RX
RX Stream Channels: 0,1,2,3
RX Gain (dB): 0.0,0.0,0.0,0.0
RX Port: TX/RX,T..X/RX,TX/RX
B-Series Mode: False

Print Debug Messages: False

USRP Sync Burst

Carrier Frequency List: 2.50E+09,2.07E+09,2.50E+09,2.07E+0...+09

Freq. Ref. Source List: internal,externa...nal

E‘ "’E Num. Keys: 2

Prop. CAR: False

Dict. Splitter (py)

Dict Keys: tx_pdu, rx_pdu

outOI
outll' ==

Outputs dict of WPDUs, keys: 'tx_pdu', 'rx_pdu'
each containing a WPDU of the transmitted
and received messages from all channels

Variable
ID: NodeChannels
Value: <class '...eChannels'>

Time Sync Controller (py)
Channels Dict.: {0:...2, 3])}
GPIO Dict.: {'sta..., 2060]]}
Sample Rate: 200M
Waveform Type: two-...wo-tone
Bandwidth: 40M, 40M
Pre-pad: 10u, 10u
Post-pad: 10u, 10u
Rise-time: 5n, 5n
Fall-time: 5n, 5n
Duration: 10u, 10u
Carrier Freq.: 2.5G, 2.5G
Rel. Phase: 0, 0
Label: None
Hist. Len.: 30
Log Level: INFO

wfm_out F""""

sync_en outputs '1' if time sync is

currently in progress to prevent
other blocks from transmitting
during sync epoch, else '1'

Virtual Sink
Stream ID: time_burst_mux
Virtual Sink
Stream ID: bias_update

Virtual Sink
Stream ID: sync_burst_rx_out
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Wavegen Block

Vector Operation (py)

Virtual Source .- =pin| Function: lambda...ory inx] lout= = === »in
out~ = = ~
Stream ID: time_burst_mux S ’ Log Level: WARN
=== “ = [ send outveck - -~
. Wavegen (py) . .
Virtual Source Virtual Sink
--------- Waveform List: wfm_...wo_tone --— -
Stream ID: bias_update out bﬁl - - M’ >in Stream ID: mf_out
- Log Level: INFO .
cal out_wfm]
QT GUI Range
ID: sync_period
Label: Auto Sync. Period (ms)
Default Value: 500
Start: 250
Stop: 10k
Step: 250
Message Strobe
set msg| Message PMT: strobe= == ====~= P start
Period (ms): 500
, - Pidelay
4
PDU QLS Peak Est. (py) :'
N Start Value: -29.9975u 2
Virtual Source . . .
out= = == P in PDU Matched Filter (py) Step Size: 5n .
Stream ID: sync_burst_rx_out R .
- —— Channel List: 0, 2 RF Center Freq.: 2.5G ¢
mf_in Reference Waveform List: None |out= = —= P>in| Waveform Type: two-tone out=-"=
N MF Mode: same Sample Rate: 200M
Virtual Source .
out~ = == P>mf wfm| Log Level: INFO Waveform Bandwidth: 40M

Stream ID: mf_out
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Correction File Path:
Log Level: WARN

USRP Sync Burst
Samples: 6k
Sample Rate (Sps): 200M

Carrier Frequency List: 2.50E+09,2.07E+09,2.50E+09,2.07E+0...+09

Burst Delay (s): 1m

Device Arguments: ad...8.11.2

Wire Format: scl6

Freq. Ref. Source List: internal,externa...nal
PPS Source List: int...ternal

TX Stream Channels: 0,1,2,3

TX Gain (dB): 21.0...1.0,10.0

TX Port: TX/RX,T..X/RX,TX/RX

RX Stream Channels: 0,1,2,3

RX Port: TX/RX,T...X/RX,TX/RX
B-Series Mode: False
Print Debug Messages: False

Variable
ID: NodeChannels
Value: <class '...eChannels'>

Time Sync Controller (py)
Channels Dict.: {0:...2, 3])}
GPIO Dict.: {'sta..., 2060]]}
Sample Rate: 200M
Waveform Type: two-...wo-tone
Bandwidth: 40M, 40M
Pre-pad: 10u, 10u
Post-pad: 10u, 10u
Rise-time: 5n, 5n sync_en

Fall-time: 5n, 5n -
Duration: 10u, 10u SRS i
Carrier Freq.: 2.5G, 2.5G
Rel. Phase: 0, 0

Label: None

Hist. Len.: 30

Log Level: INFO

delay_mat

Dict. Splitter (py)

Num. Keys: 2 auiis

outr ->lin Virtual Sink

Stream ID: sync_burst_rx_out

Dict Keys: tx_pdu, rx_pdu
Prop. CAR: False

Virtual Sink
Stream ID: time_burst_mux

Virtual Sink
Stream ID: bias_update
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USRP Sync Burst Block
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USRP Sync Burst
Samples: 6k
Sample Rate (Sps): 200M
Carrier Frequency List: 2.50E+09,2.07E+09,2.50E+09,2.07E+0...+09
Burst Delay (s): 1m
Device Arguments: ad...8.11.2
Wire Format: sc16
Freq. Ref. Source List: internal,externa...nal
PPS Source List: int...ternal
TX Stream Channels: 0,1,2,3
TX Gain (dB): 21.0...1.0,10.0
TX Port: TX/RX,T...X/RX,TX/RX
RX Stream Channels: 0,1,2,3
RX Gain (dB): 0.0,0.0,0.0,0.0
RX Port: TX/RX,T...X/RX,TX/RX
B-Series Mode: False
Print Debug Messages: False

Outputs dict of WPDUs, keys: 'tx_pdu', 'rx_pdu'
each containing a WPDU of the transmitted
and received messages from all channels
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PDU Matched Filter Block

in PDU Matched Filter (py)
Channel List: 0, 2

mf_in | Reference Waveform List: None
MF Mode: same

[mf_wfm| Log Level: INFO
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PDU QLS Peak Estimator Block

PDU QLS Peak Est. (py)
Start Value: -29.9975u
Step Size: 5n
RF Center Freq.: 2.5G
-[E] Waveform Type: two-tone
Sample Rate: 200M
Waveform Bandwidth: 40M
Correction File Path:

Log Level: WARN
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Time Sync Controller Block

Time Sync Controller (py)
Channels Dict.: {0:...2, 3])}
GPIO Dict.: {'sta..., 2060]]}

Sample Rate: 200M Z‘
Waveform Type: two-...wo-tone wim out
Bandwidth: 40M, 40M -

Pre-pad: 10u, 10u

it Post-pad: 10u, 10u
sinc en

Rise-time: 5n, 5n

Fall-time: 5n, 5n -
__blas mat

Duration: 10u, 10u
Carrier Freq.: 2.5G, 2.5G

Rel. Phase: 0, 0
Label: None
Hist. Len.: 30
Log Level: INFO

sync_en outputs '1' if time sync is
currently in progress to prevent
other blocks from transmitting
during sync epoch, else '1'
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Software Demo
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Software Demo

Time Transfer
Antennas

Coordination
Server
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Time Sync | Beamforming

Controls

c Time Sync Trigger: Manual [ Auto

Trigger Time Sync.

Auto Sync. Period (ms) 500

C) Auto Re-Trigger: Off / On
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4 | Experimental Results
Seamtiorming
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System Configuration

Legend

Time Transfer Waveform

Frequency Transfer Waveform

- = - 10 MHz Frequency Reference

------------ PPS (coarse time sync)

10 GbE (data)

Beamforming

Oscilloscope

—

41m

—_—

| Signal Generator

RF K=10MHz—)

f1 f2

i- $ REF_OUT

|
10GbE Desktop
) 10GhE Computer

GNSS Y
_rQPPS  RX

Two-Tone Frequency

Locking Circuit
10MHz 10MHz» K
- -

[6] J. M. Merlo, A. Schlegel and J. A. Nanzer, "High Accuracy Wireless Time-Frequency Transfer For Distributed Phased Array Beamforming," in 2023
IEEE/MTT-S International Microwave Symposium - IMS 2023, San Diego, CA, USA, 2023.
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System State Flow

TWTT
Exchange
- Update Ay,

Estimate %bf,n
and %bf,n at
target

Initial PPS Uzl

beamforming

e pulses

Coarse alignment Residual bias Compensate using
~10 ns compensated to Ayy, and beamsteer
picosecond level using Ty, and gyey,
Beamsteering

No

D, .
Thin = T sin Oy

Pvtn = 27 f¢i Tofn

Save 1,; and Yes

¢Pps as
calibration

[5] J. M. Merlo, A. Schlegel and J. A. Nanzer, "High Accuracy Wireless Time-Frequency Transfer For Distributed Phased Array Beamforming," in 2023
IEEE/MTT-S International Microwave Symposium - IMS 2023, San Diego, CA, USA, 2023.
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Performance Evaluation Waveforms

* Each node transmitted orthogonal LFMs followed by two CW pulses
4
Node O —
> 1
N
Node 1 —
>

h 4 h 4

L FM: Time/Phase Estimation CW Pulses: Coherent Gain Estimation

[5] J. M. Merlo, A. Schlegel and J. A. Nanzer, "High Accuracy Wireless Time-Frequency Transfer For Distributed Phased Array Beamforming," in 2023
IEEE/MTT-S International Microwave Symposium - IMS 2023, San Diego, CA, USA, 2023.
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xperimental Configuration

&

Transmit Nodes Setup Target Node Setup (41 m downrange)

[5] J. M. Merlo, A. Schlegel and J. A. Nanzer, "High Accuracy Wireless Time-Frequency Transfer For Distributed Phased Array Beamforming," in 2023
IEEE/MTT-S International Microwave Symposium - IMS 2023, San Diego, CA, USA, 2023.

High Performance SDR Applications 32



Beamforming Results

Induced Frequency Transfer Failure

Time Transfer Time Offset Q 100 ps =
g 0s- & - »
&= -
S = :
g 8 10 ps T T T T T
o —1ns — .
B fi i Delay A
Beamforming Time Offset A 100 _ camiorining Lelay Accuracy
5 0 - ) 100 ps 3
= S N :
) o :
qé —100 ps - ch -
R 10 ps T T T T T T T T
E(A T T T T D/\ p
g Beamforming Phase Offset g Beamforming Phase Accuracy
£ 0.507 = £ 0.207 -
3 5 g
gg  0.00m = < 0.107 - ——  ——/
< _0.50m - - :
% ' 2 f — T T T % 0.007 ~ T T T T T T T T
i 0s 50 s 100 s 150 s i 40s 60s 80s 100s 120s 140s 160s 180 s
Time Time

[5] J. M. Merlo, A. Schlegel and J. A. Nanzer, "High Accuracy Wireless Time-Frequency Transfer For Distributed Phased Array Beamforming," in 2023
IEEE/MTT-S International Microwave Symposium - IMS 2023, San Diego, CA, USA, 2023.
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Beamforming Results

Coherent Gain: 0.91 Coherent Gain: 0.95 Coherent Gain: 0.94
Nodes 0+1 Nodes 0+1 Nodes 041
Node 0 ] Node 0 Node 0

Node 1 Node 1 Node 1

20 mV - -

o ] o . o
e, o e,
E - R E-
= oV - == ==
@F - e, Q.
s ] g . g .
< ) < << .

—20mV - - -

_40 mV K | | | K | | | K | | |

0s 20 ps 40 ps 0s 20 ps 40 ps 0s 20 ps 40 ps
Time Time Time

[5] J. M. Merlo, A. Schlegel and J. A. Nanzer, "High Accuracy Wireless Time-Frequency Transfer For Distributed Phased Array Beamforming," in 2023
IEEE/MTT-S International Microwave Symposium - IMS 2023, San Diego, CA, USA, 2023.
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Measurement Summary

Demonstrated fully wireless outdoor time-frequency synchronization
and beamforming with G, > 0.9 overa 41 m

Internode Min. Time Min. Max. Max. Carrier
Distance Transfer Std. Beamforming Std. Throughput* Frequency’
2.1 m 10.47 ps 18.00 ps 5.56 Gbps 2.78 GHz
5.0m 14.79 ps 24.02 ps 4.16 Gbps 2.08 GHz

* Maximum theoretical BPSK throughput; Pr(G, = 0.9) > 0.9
T Maximum theoretical carrier frequency; Pr(G, = 0.9) > 0.9

[6] J. M. Merlo, A. Schlegel and J. A. Nanzer, "High Accuracy Wireless Time-Frequency Transfer For Distributed Phased Array Beamforming," in 2023
IEEE/MTT-S International Microwave Symposium - IMS 2023, San Diego, CA, USA, 2023.
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Project Status and Conclusion

In Progress:
» Standardizing inter-block communications (use PDUs/list of PDUs)

« Complete fully distributed compute software implementation
 Testing in progress

» Adding/improving documentation

Planned Work:
 Add test cases for CI/CD
* Open source releases

* Investigate use of streaming interface with managed latency to
leverage existing streaming blocks
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Questions?

merlojas@msu.edu
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